In mathematics, especially in the field of category theory, the concept of injective object is a generalization of the concept of injective module. This concept is important in homotopy theory and in theory of model categories. The dual notion is that of a projective object.
Contents |
Let be a category and let be a class of morphisms of .
An object of is said to be -injective if for every arrow and every morphism in there exists a morphism extending (the domain of) , i.e . In other words, is injective iff any -morphism extends (via composition on the left) to any morphism into .
The morphism in the above definition is not required to be uniquely determined by .
In a locally small category, it is equivalent to require that the hom functor carries -morphisms to epimorphisms (surjections).
The classical choice for is the class of monomorphisms, in this case, the expression injective object is used.
If is an abelian category, an object A of is injective iff its hom functor HomC(–,A) is exact.
The abelian case was the original framework for the notion of injectivity.
Let be a category, H a class of morphisms of ; the category is said to have enough H-injectives if for every object X of , there exist a H-morphism from X to an H-injective object.
A H-morphism g in is called H-essential if for any morphism f, the composite fg is in H only if f is in H.
If f is a H-essential H-morphism with a domain X and an H-injective codomain G, G is called an H-injective hull of X. This H-injective hull is then unique up to a canonical isomorphism.